Hackett, M. Strath, M. Penzo, C. Withers-Martinez, D. Baker, and M. Dvorin, D. Martyn, S. Patel, J. Grimley, C. Collins, C. Hopp, A. Bright, S. Westenberger, E. Winzeler, M.
Blackman, D. Baker, T. Wandless, and M. Absalon, K. Blomqvist, R. Rudlaff, T. DeLano, M. Pollastri, and J. Yeoh, R. O'Donnell, K. Koussis, A. Dluzewski, K. Ansell, S. Osborne, F. Hackett, C. Withers-Martinez, G. Mitchell, L. Bannister, J. Bryans, C. Kettleborough, and M. Arastu-Kapur, E. Ponder, U. Yeoh, F. Yuan, M. Grainger, C. Phillips, J.
Powers, and M. Bogyo, "Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum", Nature Chemical Biology , vol.
Silmon de Monerri, H. Flynn, M. Campos, F. Hackett, K. Koussis, C. Withers-Martinez, J. Skehel, and M. Ruecker, M. Shea, F. Suarez, E. Hirst, K. Milutinovic, C. Withers-Martinez, and M. Stallmach, M. Kavishwar, C. Collins, S. Howell, S. Yeoh, E. Knuepfer, A. Atid, A.
Holder, and M. Hackett, J. Atid, M. Tan, and M. Thomas, M. Tan, C. Bisson, A. Borg, T. Umrekar, F. Hackett, V. Hale, G. Vizcay-Barrena, R. Fleck, A. Snijders, H. Saibil, and M. Blackman, "A protease cascade regulates release of the human malaria parasite Plasmodium falciparum from host red blood cells", Nature Microbiology , vol.
Glushakova, J. Mazar, M. Hohmann-Marriott, E. Hama, and J. Zimmerberg, "Irreversible effect of cysteine protease inhibitors on the release of malaria parasites from infected erythrocytes", Cellular Microbiology , vol.
Glushakova, G. Humphrey, E. Leikina, A. Balaban, J. Miller, and J. Garten, B. Busse, A. Nasamu, T. Tenkova-Heuser, J. Heuser, D. Goldberg, and J. Zimmerberg, "Rounding precedes rupture and breakdown of vacuolar membranes minutes before malaria parasite egress from erythrocytes", Cellular Microbiology , vol.
Hale, J. Watermeyer, F. Hackett, G. Vizcay-Barrena, C. Spink, M. Harkiolaki, E. Duke, R. Fleck, M. Blackman, and H. Saibil, "Parasitophorous vacuole poration precedes its rupture and rapid host erythrocyte cytoskeleton collapse inPlasmodium falciparumegress", Proceedings of the National Academy of Sciences , vol. Glushakova, D. Yin, T. Li, and J. Abkarian, G. Massiera, L. Berry, M. Roques, and C. Braun-Breton, "A novel mechanism for egress of malarial parasites from red blood cells", Blood , vol.
Perrin, C. Russell, L. Collinson, D. PRADEL, "Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies", Parasitology , vol. Kuehn, and G. Bennink, M. Kiesow, and G. Pradel, "The development of malaria parasites in the mosquito midgut", Cellular Microbiology , vol. Muhia, C. Swales, W. Deng, J. Kelly, and D. Baker, "The gametocyte-activating factor xanthurenic acid stimulates an increase in membrane-associated guanylyl cyclase activity in the human malaria parasite Plasmodium falciparum", Molecular Microbiology , vol.
McRobert, C. Taylor, W. Deng, Q. Fivelman, R. Cummings, S. Polley, O. Billker, and D. Brochet, M. Collins, T. Smith, E. Thompson, S. Sebastian, K. Volkmann, F.
Schwach, L. Chappell, A. Gomes, M. Berriman, J. Rayner, D. Baker, J. Choudhary, and O. Raabe, K. Wengelnik, O. Billker, and H. Vial, "Multiple roles for Plasmodium berghei phosphoinositide-specific phospholipase C in regulating gametocyte activation and differentiation", Cellular Microbiology , vol.
Billker, S. Dechamps, R. Tewari, G. Wenig, B. Franke-Fayard, and V. Sebastian, M. Schwach, M. Jones, D. Goulding, J. Rayner, J. Alano, D. Read, M. Bruce, M. Aikawa, T. Kaido, T. Tegoshi, S. Bhatti, D. Smith, C. Luo, S. Hansra, R. Carter, and J. Elliott, "COS cell expression cloning of Pfg, a Plasmodium falciparum gametocyte antigen associated with osmiophilic bodies", Molecular and Biochemical Parasitology , vol.
Severini, F. Silvestrini, A. Sannella, S. Barca, L. Gradoni, and P. Alano, "The production of the osmiophilic body protein Pfg is associated with stage of maturation and sex in Plasmodium falciparum gametocytes", Molecular and Biochemical Parasitology , vol. Ponzi, I. Bertuccini, C. Kroeze, G. Camarda, T. Pace, B. Franke-Fayard, E. Laurentino, C. Louis, A.
Waters, C. Janse, and P. Talman, C. Lacroix, S. Marques, A. Blagborough, R. Carzaniga, R. Olivieri, L. Bertuccini, E. Deligianni, B. Franke-Fayard, C. Siden-Kiamos, E. Hanssen, F. Grasso, F. Superti, T. Pace, F. Fratini, C. Janse, and M. Ponzi, "Distinct properties of the egress-related osmiophilic bodies in male and female gametocytes of the rodent malaria parasitePlasmodium berghei", Cellular Microbiology , vol.
Kehrer, F. Frischknecht, and G. Kehrer, M. Singer, L. Lemgruber, P. Silva, F. Sharma, L. Bertuccini, G. Costa, N. Bannerman, A. Rosa Sannella, K. Williamson, M. Klemba, E. Levashina, E. Lasonder, and P. Golzmann, S. Bennink, G. Pradel, and C. Julius Ngwa, "Transcript and protein expression analysis of proteases in the blood stages of Plasmodium falciparum", Experimental Parasitology , vol. Bargieri, S. Thiberge, C. Tay, A. Carey, A. Rantz, F. Hischen, A.
Lorthiois, U. Straschil, P. Singh, S. Singh, T. Triglia, T. Tsuboi, A. Cowman, C. Chitnis, P. Alano, J. Baum, G. Pradel, C. Lavazec, and R. Baum, D. Richard, J.
Healer, M. Rug, Z. Krnajski, T. Gilberger, J. Green, A. Holder, and A. M E. Deligianni, R. Morgan, L. Wirth, N. Silmon de Monerri, L. Spanos, M. Blackman, C. Louis, G.
Pradel, and I. Siden-Kiamos, "A perforin-like protein mediates disruption of the erythrocyte membrane during egress ofPlasmodium bergheimale gametocytes", Cellular Microbiology , vol. Wirth, S. Glushakova, M. Scheuermayer, U. Repnik, S. Garg, D. Schaack, M. Kachman, T. Zimmerberg, T. Dandekar, G. Griffiths, C. Chitnis, S. Singh, R. Fischer, and G. Sologub, A. Kuehn, S. Kern, J. Przyborski, R. Schillig, and G. Pradel, "Malaria proteases mediate inside-out egress of gametocytes from red blood cells following parasite transmission to the mosquito", Cellular Microbiology , vol.
Andreadaki, E. Hanssen, E. Deligianni, C. Claudet, K. Wengelnik, V. Mollard, G. McFadden, M. Abkarian, C. Braun-Breton, and I. Rupp, R. Bosse, T. Schirmeister, and G. Pradel, "Effect of protease inhibitors on exflagellation in Plasmodium falciparum", Molecular and Biochemical Parasitology , vol.
Pszenny, K. Ehrenman, J. Romano, A. Kennard, A. Schultz, D. Roos, M. Grigg, V. Carruthers, and I. Schultz, and V. Kafsack, J. Pena, I. Coppens, S. Ravindran, J. Boothroyd, and V. Roiko, and V. Ni, S. Williams, S. Rezelj, G. Anderluh, K. Harlos, P. Stansfeld, and R. Gilbert, "Structures of monomeric and oligomeric forms of the Toxoplasma gondii perforin-like protein 1", Science Advances , vol. Dogga, B. Mukherjee, D. Jacot, T. Kockmann, L. Molino, P. Hammoudi, R. Hartkoorn, A.
Hehl, and D. Soldati-Favre, "A druggable secretory protein maturase of Toxoplasma essential for invasion and egress", eLife , vol. Gras, A. Jackson, S. Woods, G. Pall, J. Whitelaw, J. Leung, G. Ward, C. Roberts, and M.
Meissner, "Parasites lacking the micronemal protein MIC2 are deficient in surface attachment and host cell egress, but remain virulent in vivo", Wellcome Open Research , vol.
Saha, B. Intraphagocytic growth induces an antibiotic-resistant phenotype of Legionella pneumophila. Agents Chemother. Boudry, P. Bozue, J. Interaction of Legionella pneumophila with Acanthamoeba castellanii : uptake by coiling phagocytosis and inhibition of phagosome-lysosome fusion.
PubMed Abstract Google Scholar. Brieland, J. The role of Legionella pneumophila -infected Hartmannella vermiformis as an infectious particle in a murine model of Legionnaire's disease.
Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Byrne, B. Expression of Legionella pneumophila virulence traits in response to growth conditions. Cazalet, C. Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires' disease.
PLoS Genet. Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Choy, A. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science , — Cirillo, J. Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion.
Correia, A. Probable person-to-person transmission of Legionnaires' disease. Cunha, B. Legionnaires' disease. Lancet , — Dalebroux, Z. SpoT governs Legionella pneumophila differentiation in host macrophages. Distinct roles of ppGpp and DksA in Legionella pneumophila differentiation. Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. De Leon, J. Positive and negative regulation of the master metabolic regulator mTORC1 by two families of Legionella pneumophila effectors.
Cell Rep. Dietrich, C. Flagellum of Legionella pneumophila positively affects the early phase of infection of eukaryotic host cells. Edwards, R. CrossRef Full Text. Eisenreich, W. The life stage-specific pathometabolism of Legionella pneumophila. FEBS Lett. Escoll, P. Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. From amoeba to macrophages: exploring the molecular mechanisms of Legionella pneumophila infection in both hosts.
Eylert, E. Isotopologue profiling of Legionella pneumophila : role of serine and glucose as carbon substrates. Faucher, S. Legionella pneumophila transcriptome during intracellular multiplication in human macrophages. Faulkner, G. Ultrastructural analysis of differentiation in Legionella pneumophila.
Fields, B. The molecular ecology of Legionellae. Trends Microbiol. Legionella and Legionnaires' disease: 25 years of investigation. Gal-Mor, O. Identification of CpxR as a positive regulator of icm and dot virulence genes of Legionella pneumophila.
The Legionella pneumophila GacA homolog LetA is involved in the regulation of icm virulence genes and is required for intracellular multiplication in Acanthamoeba castellanii. Intracellular growth of Legionella pneumophila gives rise to a differentiated form dissimilar to stationary-phase forms.
George, J. Amino acid requirements of Legionella pneumophila. Gillmaier, N. Growth-related metabolism of the carbon storage Polyhydroxybutyrate in Legionella pneumophila. Gomez-Valero, L. Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host-pathogen interactions. Hales, L.
The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii. Hammer, B. Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp.
A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Harada, E. Glucose metabolism in Legionella pneumophila : dependence on the Entner-Doudoroff pathway and connection with intracellular bacterial growth. Haugen, S.
Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Pathway analysis using 13 C-glycerol and other carbon tracers reveals a bipartite metabolism of Legionella pneumophila. Legionella pneumophila CsrA regulates a metabolic switch from amino acid to glycerolipid metabolism. Open Biol Herrmann, V. GamA is a eukaryotic-like glucoamylase responsible for glycogen- and starch-degrading activity of Legionella pneumophila.
Heuner, K. Influence of the alternative sigma 28 factor on virulence and flagellum expression of Legionella pneumophila. The alternative sigma factor sigma28 of Legionella pneumophila restores flagellation and motility to an Escherichia coli fliA mutant. The flagellum of Legionella pneumophila and its link to the expression of the virulent phenotype. Hilbi, H. Legionella spp.
Update on Legionnaires' disease: pathogenesis, epidemiology, detection and control. Environmental predators as models for bacterial pathogenesis. Hochstrasser, R. Intra-species and inter-kingdom signaling of Legionella pneumophila. Horwitz, M. Legionnaires' disease bacterium Legionella pneumophila multiples intracellularly in human monocytes. Hovel-Miner, G. SigmaS controls multiple pathways associated with intracellular multiplication of Legionella pneumophila.
Isaac, D. MavN is a Legionella pneumophila vacuole-associated protein required for efficient iron acquisition during intracellular growth. Isberg, R. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Jacobi, S. Characterization of the alternative sigma factor sigma54 and the transcriptional regulator FleQ of Legionella pneumophila , which are both involved in the regulation cascade of flagellar gene expression.
James, B. Polyhydroxybutyrate in Legionella pneumophila , an energy source for survival in low-nutrient environments. Jishage, M. Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev. Kulkarni, P. Nucleic Acids Res. Lang, C. Characterisation of Legionella pneumophila phospholipases and their impact on host cells. Cell Biol. Liu, M. Lomma, M.
The Legionella pneumophila F-box protein Lpp AnkB modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Lynch, D. The response regulator LetA regulates the stationary-phase stress response in Legionella pneumophila and is required for efficient infection of Acanthamoeba castellanii. FEMS Microbiol. Manske, C. Metabolism of myo-inositol by Legionella pneumophila promotes infection of amoeba and macrophages.
McDade, J. Legionnaires' disease: isolation of a bacterium and demonstration of its role in other respiratory disease. McNealy, T. Molofsky, A. Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Newton, H. Molecular pathogenesis of infections caused by Legionella pneumophila.
Ninio, S. Effector proteins translocated by Legionella pneumophila : strength in numbers. Nora, T. Molecular mimicry: an important virulence strategy employed by Legionella pneumophila to subvert host functions. This mechanism, which contributes to the development of legionellosis, has been confirmed in a mouse model of infection. Rupasinghei, Dedreia Tulli, Malcolm J. Enter your keywords. Claude Flamand : predicting epidemics with satellite images Dr Amy Kristine Bei to head a new 4-year research group on malaria in Dakar Dr.
The Insitut Pasteur is addressing the major scientific and health issues facing the world today The Institut Pasteur in A legacy of excellence The Research Journal : the most read articles in ! The Research Journal: 's most read articles! News "COVID, cancers and antibiotic resistance: meeting the researchers of the Institut Pasteur": programme available for replay "Mental anchorpoints" used by musicians to identify pitch "N-terminomics" reveals how Listeria bacteria detect and react to stress "Pasteur, the experimenter" — the must-see exhibition!
How does hearing work? Why does bronchiolitis only affect infants? You are here. Home The research journal News How does Legionella pneumophila, the bacterium causing legionellosis, use the host cell machinery to its own advantage? The research journal. All news. Print Share. Subscribe to the Institut Pasteur Newsletter. By clicking OK, you are agreeing to receive the Institut Pasteur newsletter each month. You can easily unsubscribe at any moment by using the unsubscribe link that appears in each email.
0コメント